

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

A Comparison of Zonal Scans and Strip Scans of Thin-Layer Chromatograms

Fred Snyder^a

^a Medical Division Oak Ridge Institute of Nuclear Studies Oak Ridge, Tennessee

To cite this Article Snyder, Fred(1966) 'A Comparison of Zonal Scans and Strip Scans of Thin-Layer Chromatograms', Separation Science and Technology, 1: 5, 655 — 657

To link to this Article: DOI: 10.1080/01496396608049471

URL: <http://dx.doi.org/10.1080/01496396608049471>

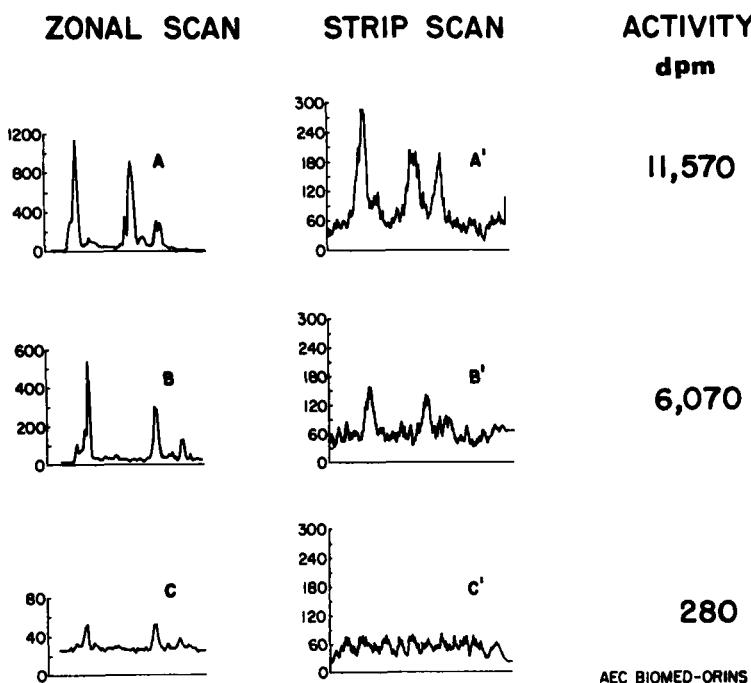
PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE


A Comparison of Zonal Scans and Strip Scans of Thin-Layer Chromatograms*

The most accurate methods for determining the distribution of radioactivity on thin-layer chromatograms are zonal scanning (1,2) and strip scanning (3). The present communication records the comparison of these two methods in regard to sensitivity and degree of resolution. Various activities of ^{14}C -labeled lipids were separated on chromatostrips for quantitative radioassay. The zonal scans were prepared with an automatic scraping device (1). A Packard Radiochromatogram Scanner, Model 7200, was used to scan the chromatostrips before the scraping of 2-mm zones. Settings for the strip scanner were at the highest sensitivity that was compatible with background noise: gas flow, 300 cc; voltage, 1150 volts; chart speed, 1.0 cm/min; time constant, 10; and linear range, 300.

Figure 1 demonstrates the increased sensitivity and superiority of resolution of zonal-scan analysis over windowless strip scanning. Zonal scanning with an automatic scraper and sample collector revealed the same radioactivity peaks for the plate containing 280 dpm (Plate C) as for the plate containing the highest quantity of radioactivity (Plate A, 11,570 dpm). In contrast, the various activity peaks along the chromatostrip became obscure if strip scanning was used for their detection. Obviously, not only the sensitivity is much greater in zonal scanning, but also the degree of resolution for detecting the separations is significantly better. The great advantage of zonal scanning over strip scanning becomes even more apparent in work with ^{3}H -labeled compounds. Because of

* From the Medical Division of the Oak Ridge Institute of Nuclear Studies, an operating unit of Oak Ridge Associated Universities, Inc., Oak Ridge, Tennessee, under contract with the U.S. Atomic Energy Commission.

its greater sensitivity, the use of zonal scanning is mandatory in work with biological specimens.

FIG. 1. Strip and zonal scans (2-mm) of a ^{14}C -labeled lipid mixture separated on Silica Gel G in a solvent system of hexane:diethyl ether:glacial acetic acid (80:20:1 v/v/v). The numbers along the ordinate represent counts per minute.

Acknowledgments

The author expresses thanks to Nelson Stephens of the Oak Ridge Institute of Nuclear Studies and Michael Frosolono of the University of North Carolina, Department of Biochemistry, for assistance in this work.

REFERENCES

1. F. Snyder and H. Kimble, *Anal. Biochem.*, **11**, 510 (1965).
2. F. Snyder, *International Atomic Energy Agency, Symposium on Radioisotope Techniques in Medicine and Biology*, Vienna, 1965, p. 521.

3. P. E. Schulze and M. Wenzel, *Angew. Chem. Intern. Ed. (English)*, **1**, 580 (1962).

FRED SNYDER

*Medical Division
Oak Ridge Institute of Nuclear Studies
Oak Ridge, Tennessee*

*Received by editor July 22, 1966
Submitted for publication August 5, 1966*